Aligned human cardiac syncytium for in vitro analysis of electrical, structural, and mechanical readouts

对齐的人类心脏合胞体用于体外分析电气、结构和机械读数

阅读:6
作者:B N Napiwocki, D Lang, A Stempien, J Zhang, R Vaidyanathan, J C Makielski, L L Eckhardt, A V Glukhov, T J Kamp, W C Crone

Abstract

Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have emerged as an exciting new tool for cardiac research and can serve as a preclinical platform for drug development and disease modeling studies. However, these aspirations are limited by current culture methods in which hPSC-CMs resemble fetal human cardiomyocytes in terms of structure and function. Herein we provide a novel in vitro platform that includes patterned extracellular matrix with physiological substrate stiffness and is amenable to both mechanical and electrical analysis. Micropatterned lanes promote the cellular and myofibril alignment of hPSC-CMs while the addition of micropatterned bridges enable formation of a functional cardiac syncytium that beats synchronously over a large two-dimensional area. We investigated the electrophysiological properties of the patterned cardiac constructs and showed they have anisotropic electrical impulse propagation, as occurs in the native myocardium, with speeds 2x faster in the primary direction of the pattern as compared to the transverse direction. Lastly, we interrogated the mechanical function of the pattern constructs and demonstrated the utility of this platform in recording the strength of cardiomyocyte contractions. This biomimetic platform with electrical and mechanical readout capabilities will enable the study of cardiac disease and the influence of pharmaceuticals and toxins on cardiomyocyte function. The platform also holds potential for high throughput evaluation of drug safety and efficacy, thus furthering our understanding of cardiovascular disease and increasing the translational use of hPSC-CMs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。