Microvessel Network Formation and Interactions with Pancreatic Islets in Three-Dimensional Chip Cultures

三维芯片培养中微血管网络的形成及其与胰岛的相互作用

阅读:9
作者:Mia H Rambøl, Edward Han, Laura E Niklason

Abstract

The pancreatic islet is a highly vascularized micro-organ, and rapid revascularization postislet transplantation is important for islet survival and function. However, the various mechanisms involved in islet revascularization are not fully understood, and we currently lack good in vitro platforms to explore this. Our aim for this study was to generate perfusable microvascular networks in a microfluidic chip device, in which islets could be easily integrated, to establish an in vitro platform for investigations on islet-microvasculature interactions. We compared the ability of mesenchymal stem cells (MSCs) and fibroblasts to support microvascular network formation by human umbilical vein endothelial cells (HUVECs) and human induced pluripotent stem cell-derived endothelial colony-forming cell in two-dimensional and three-dimensional models of angiogenesis, and tested the effect of different culture media on microvessel formation. HUVECs that were supported by MSCs formed patent and perfusable networks in a fibrin gel, whereas networks supported by fibroblasts rapidly regressed. Network morphology could be controlled by adjusting relative cell numbers and densities. Incorporation of isolated rat islets demonstrated that islets recruit local microvasculature in vitro, but that the microvessels did not invade islets, at least during the course of these studies. This in vitro microvascularization platform can provide a useful tool to study how various parameters affect islet integration with microvascular networks and could also be utilized for studies of vascularization of other organ systems. Impact statement To improve pancreatic islet graft survival and function posttransplantation, rapid and adequate revascularization is critical. Efforts to improve islet revascularization are demanding due to an insufficient understanding of the mechanisms involved in the process. We have applied a microfluidics platform to generate microvascular networks, and by incorporating pancreatic islets, we were able to study microvasculature-islet interactions in real time. This platform can provide a useful tool to study islet integration with microvascular networks, and could be utilized for studies of vascularization of other organ systems. Moreover, this work may be adapted toward developing a prevascularized islet construct for transplantation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。