VprBP/DCAF1 regulates p53 function and stability through site-specific phosphorylation

VprBP/DCAF1通过位点特异性磷酸化调节p53功能和稳定性

阅读:7
作者:Nikhil Baban Ghate #, Sungmin Kim #, Roasa Mehmood, Yonghwan Shin, Kyunghwan Kim, Woojin An

Abstract

VprBP (also known as DCAF1) is a recently identified kinase that is overexpressed in cancer cells and serves as a major determinant for epigenetic gene silencing and tumorigenesis. The role of VprBP in driving target gene inactivation has been largely attributed to its ability to mediate histone H2A phosphorylation. However, whether VprBP also phosphorylates non-histone proteins and whether these phosphorylation events drive oncogenic signaling pathways have not been explored. Here we report that serine 367 phosphorylation (S367p) of p53 by VprBP is a key player in attenuating p53 transcriptional and growth suppressive activities. VprBP catalyzes p53S367p through a direct interaction with the C-terminal domain of p53. Mechanistically, VprBP-mediated S367p inhibits p53 function in the wake of promoting p53 proteasomal degradation, because blocking p53S367p increases p53 protein levels, thereby enhancing p53 transactivation. Furthermore, abrogation of VprBP-p53 interaction by p53 acetylation is critical for preventing p53S367p and potentiating p53 function in response to DNA damage. Together, our findings establish VprBP-mediated S367p as a negative regulator of p53 function and identify a previously uncharacterized mechanism by which S367p modulates p53 stability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。