Evaluation and optimization of a new microbial enhancement plug-flow ditch system for the pretreatment of acid mine drainage: semi-pilot test

用于酸性矿山废水预处理的新型微生物强化推流沟系统的评估与优化:半中试试验

阅读:6
作者:Yongwei Song, Heru Wang, Jun Yang, Lixiang Zhou, Jingcheng Zhou, Yanxiao Cao

Abstract

Acid mine drainage (AMD) is typically characterized by low pH, a high concentration of sulfate and dissolved heavy metals. Therefore, it is of practical significance to promote the transformation of soluble Fe and SO4 2- into iron hydroxysulfate minerals by biomineralization of Acidithiobacillus ferrooxidans. This enhances the lime neutralization efficiency of AMD by reducing the production of ferric hydroxide and waste gypsum. In this study, a new microbial enhanced plug-flow ditch reaction system was developed for the pretreatment of AMD on a semi-pilot scale. System stability under different hydraulic retention times (HRTs) was examined and the effects of microbe enhancement-lime neutralization technology and direct lime neutralization technology were compared. The bio-oxidation efficiency of Fe2+ (5 g L-1) reached 100% in some parts of the system when HRT was 3 and 2 days, and the time taken to reach steady state was 6 and 4 days, respectively. When the HRT was 1 day, the reaction system had operated for 4 days before the equilibrium was lost. At the optimum HRT (2 days) and after the system was stable, the average precipitation rate of total Fe was 53.62% and the average removal rate of As(iii) was 17.27%. Following microbial enhanced pretreatment, the amount of lime required and waste residues generated for AMD neutralization decreased by 75.00% and 85.25%, respectively. This result supports the application of microbial enhancement-lime neutralization passive treatment technology for AMD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。