Identification of DW532 as a novel anti-tumor agent targeting both kinases and tubulin

鉴定 DW532 为一种靶向激酶和微管蛋白的新型抗肿瘤药物

阅读:6
作者:Ting Peng, Jian-Rui Wu, Lin-Jiang Tong, Meng-Yuan Li, Fang Chen, Yi-Xin Leng, Rong Qu, Kun Han, Yi Su, Yi Chen, Wen-Hu Duan, Hua Xie, Jian Ding

Aim

7,8-Dihydroxy-4-(3-hydroxy-4-methoxyphenyl)-2H-chromen-2-one (DW532) is one of simplified analogues of hematoxylin that has shown broad-spectrum inhibition on tyrosine kinases and in vitro anti-cancer activities. The aim of this study was to identify DW532 as a agent targeting both kinases and tubulin, and to investigate its anti-cancer and anti-angiogenesis activities.

Conclusion

DW532 is a dual inhibitor against tubulin and tyrosine kinases, and deserves further development as a novel anti-cancer agent.

Methods

In vitro tyrosine kinases activity was examined with ELISA, and tyrosine kinases activity in cells was evaluated with Western blot analysis. Tubulin turbidity assay, surface plasmon resonance and immunofluorescence technique were used to characterize the tubulin inhibitory activity. Cell proliferation was examined with SRB assay, and cell apoptosis and cell cycle distribution were analyzed with Annexin-V/PI staining and flow cytometry. Tube formation, aortic ring and chick chorioallantoic membrane assays were used to evaluate the anti-angiogenesis efficacy.

Results

DW532 inhibited EGFR and VEGFR2 in vitro kinase activity (the IC50 values were 4.9 and 5.5 μmol/L, respectively), and suppressed their downstream signaling. DW532 dose-dependently inhibited tubulin polymerization via direct binding to tubulin, thus disrupting the mitotic spindle assembly and leading to abnormal cell division. In a panel of human cancer cells, DW532 (1 and 10 μmol/L) induced G2/M phase arrest and cell apoptosis, which subsequently resulted in cytotoxicity. Knockdown of BubR1 or Mps1, the two core proteins of the spindle assembly checkpoint dramatically decreased DW532-induced cell cycle arrest in MDA-MB-468 cells. Moreover, treatment with DW532 potently and dose-dependently suppressed angiogenesis in vitro and in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。