Optimization of hydrogenobyrinic acid biosynthesis in Escherichia coli using multi-level metabolic engineering strategies

利用多层次代谢工程策略优化大肠杆菌中氢化可的松酸生物合成

阅读:7
作者:Pingtao Jiang, Huan Fang, Jing Zhao, Huina Dong, Zhaoxia Jin, Dawei Zhang

Background

Hydrogenobyrinic acid is a key intermediate of the de-novo aerobic biosynthesis pathway of vitamin B12. The introduction of a heterologous de novo vitamin B12 biosynthesis pathway in Escherichia coli offers an alternative approach for its production. Although E. coli avoids major limitations that currently faced by industrial producers of vitamin B12, such as long growth cycles, the insufficient supply of hydrogenobyrinic acid restricts industrial vitamin B12 production.

Conclusions

Through multi-level metabolic engineering strategies, we achieved the metabolic balance of the uroporphyrinogen III biosynthesis pathway, eliminated toxicity due to by-product accumulation, and finally achieved a high HBA titer of 22.57 mg L-1 in E. coli. This lays the foundation for high-yield production of vitamin B12 in E. coli and will hopefully accelerate its industrial production.

Results

By designing combinatorial ribosomal binding site libraries of the hemABCD genes in vivo, we found that their optimal relative translational initiation rates are 10:1:1:5. The transcriptional coordination of the uroporphyrinogen III biosynthetic module was realized by promoter engineering of the hemABCD operon. Knockdown of competitive heme and siroheme biosynthesis pathways by RBS engineering enhanced the hydrogenobyrinic acid titer to 20.54 and 15.85 mg L-1, respectively. Combined fine-tuning of the heme and siroheme biosynthetic pathways enhanced the hydrogenobyrinic acid titer to 22.57 mg L-1, representing a remarkable increase of 1356.13% compared with the original strain FH215-HBA. Conclusions: Through multi-level metabolic engineering strategies, we achieved the metabolic balance of the uroporphyrinogen III biosynthesis pathway, eliminated toxicity due to by-product accumulation, and finally achieved a high HBA titer of 22.57 mg L-1 in E. coli. This lays the foundation for high-yield production of vitamin B12 in E. coli and will hopefully accelerate its industrial production.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。