Analysis of the Agrotis segetum pheromone gland transcriptome in the light of sex pheromone biosynthesis

从性信息素生物合成的角度分析地老虎信息素腺转录组

阅读:6
作者:Bao-Jian Ding, Christer Löfstedt

Background

Moths rely heavily on pheromone communication for mate finding. The pheromone components of most moths are modified from the products of normal fatty acid metabolism by a set of tissue-specific enzymes. The turnip moth, Agrotis segetum uses a series of homologous fatty-alcohol acetate esters ((Z)-5-decenyl, (Z)-7-dodecenyl, and (Z)-9 tetradecenyl acetate) as its sex pheromone components. The ratio of the components differs between populations, making this species an interesting subject for studies of the enzymes involved in the biosynthetic pathway and their influence on sex pheromone variation.

Conclusions

The massive sequencing technology generates enormous amounts of candidate genes potentially involved in pheromone biosynthesis but testing their function by heterologous expression or gene silencing is a bottleneck. We confirmed the function of a previously identified desaturase gene and a fatty-acyl reductase gene by heterologous expression, but the acetyltransferase postulated to be involved in pheromone biosynthesis remains illusive, in spite of 34 candidates being assayed. We also generated lists of gene candidates that may be useful for characterizing the acetyl-CoA carboxylase, fatty acid synthetase and β-oxidation enzymes.

Results

Illumina sequencing and comparative analysis of the transcriptomes of the pheromone gland and abdominal epidermal tissue, enabled us to identify genes coding for putative key enzymes involved in the pheromone biosynthetic pathway, such as fatty acid synthase, β-oxidation enzymes, fatty-acyl desaturases (FAD), fatty-acyl reductases (FAR), and acetyltransferases. We functionally assayed the previously identified ∆11-desaturase [GenBank: ES583599, JX679209] and FAR [GenBank: JX679210] and candidate acetyltransferases (34 genes) by heterologous expression in yeast. The functional assay confirmed that the ∆11-desaturase interacts with palmitate and produces (Z)-11-hexadecenoate, which is the common unsaturated precursor of three homologous pheromone component acetates produced by subsequent chain-shortening, reduction and acetylation. Much lower, but still visible, activity on 14C and 12C saturated acids may account for minor pheromone compounds previously observed in the pheromone gland. The FAR characterized can operate on various unsaturated fatty acids that are the immediate acyl precursors of the different A. segetum pheromone components. None of the putative acetyltransferases that we expressed heterologously did acetylate any of the fatty alcohols tested as substrates. Conclusions: The massive sequencing technology generates enormous amounts of candidate genes potentially involved in pheromone biosynthesis but testing their function by heterologous expression or gene silencing is a bottleneck. We confirmed the function of a previously identified desaturase gene and a fatty-acyl reductase gene by heterologous expression, but the acetyltransferase postulated to be involved in pheromone biosynthesis remains illusive, in spite of 34 candidates being assayed. We also generated lists of gene candidates that may be useful for characterizing the acetyl-CoA carboxylase, fatty acid synthetase and β-oxidation enzymes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。