Regional gain and global loss of 5-hydroxymethylcytosine coexist in genitourinary cancers and regulate different oncogenic pathways

5-羟甲基胞嘧啶的区域性增加和整体性损失在泌尿生殖系统癌症中共存并调节不同的致癌途径

阅读:8
作者:Jie Qi #, Yue Shi #, Yezhen Tan #, Qi Zhang, Jianye Zhang, Jilu Wang, Cong Huang, Weimin Ci

Background

DNA 5-hydroxymethylcytosine (5hmC) is produced by dynamic 5mC oxidation process contributing to tissue specification, and loss of 5hmC has been reported in multiple cancers including genitourinary cancers. However, 5hmC is also cell-type specific, and its variability may exist between differentiated tumor cells and cancer stem cells. Thus, cancer-associated changes in 5hmC may be contributed by distinct sets of tumor cells within the tumor tissues.

Conclusions

Collectively, our study dissects the regional gain of 5hmC in maintaining cancer stem-like cells and related to poor prognosis, which provides proof of concept for an epigenetic differentiation therapy with vitamin C by 5hmC reprogramming.

Results

Here, we applied a sensitive immunoprecipitation-based method (hMeDIP-seq) to analyze 5hmC changes during genitourinary carcinogenesis (including prostate, urothelial and kidney). We confirmed the tissue-specific distribution of 5hmC in genitourinary tissues and identified regional gain and global loss of 5hmC coexisting in genitourinary cancers. The genes with gain of 5hmC during tumorigenesis were functionally enriched in regulating stemness and hypoxia, whereas were associated with poor clinical prognosis irrespective of their differences in tumor type. We identified that gain of 5hmC occurred in soft fibrin gel-induced 3D tumor spheres with a tumor-repopulating phenotype in two prostate cancer cell lines, 22RV1 and PC3, compared with conventional two-dimensional (2D) rigid dishes. Then, we defined a malignant signature derived from the differentially hydroxymethylated regions affected genes of cancer stem-like cells, which could predict a worse clinical outcome and identified phenotypically malignant populations of cells from prostate cancer tumors. Notably, an oxidation-resistant vitamin C derivative, ascorbyl phosphate magnesium, restored 5hmC and killed the cancer stem cell-like cells leading to apoptosis in prostate cancer cell lines. Conclusions: Collectively, our study dissects the regional gain of 5hmC in maintaining cancer stem-like cells and related to poor prognosis, which provides proof of concept for an epigenetic differentiation therapy with vitamin C by 5hmC reprogramming.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。