Alterations of nitric oxide homeostasis as trigger of intestinal barrier dysfunction in non-alcoholic fatty liver disease

一氧化氮稳态的改变是非酒精性脂肪肝肠道屏障功能障碍的诱因

阅读:5
作者:Anja Baumann, Dragana Rajcic, Annette Brandt, Victor Sánchez, Finn Jung, Raphaela Staltner, Anika Nier, Michael Trauner, Katharina Staufer, Ina Bergheim

Abstract

Changes in intestinal nitric oxide metabolism are discussed to contribute for the development of intestinal barrier dysfunction in non-alcoholic fatty liver disease (NAFLD). To induce steatosis, female C57BL/6J mice were pair-fed with a liquid control diet (C) or a fat-, fructose- and cholesterol-rich diet (FFC) for 8 weeks. Mice received the diets ± 2.49 g L-arginine/kg bw/day for additional 5 weeks. Furthermore, mice fed C or FFC ± L-arginine/kg bw/day for 8 weeks were concomitantly treated with the arginase inhibitor Nω -hydroxy-nor-L-arginine (nor-NOHA, 0.01 g/kg bw). Liver damage, intestinal barrier function, nitric oxide levels and arginase activity in small intestine were assessed. Also, arginase activity was measured in serum from 13 patients with steatosis (NAFL) and 14 controls. The development of steatosis with beginning inflammation was associated with impaired intestinal barrier function, increased nitric oxide levels and a loss of arginase activity in small intestine in mice. L-arginine supplementation abolished the latter along with an improvement of intestinal barrier dysfunction; nor-NOHA attenuated these effects. In patients with NAFL, arginase activity in serum was significantly lower than in healthy controls. Our data suggest that increased formation of nitric oxide and a loss of intestinal arginase activity is critical in NAFLD-associated intestinal barrier dysfunction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。