Accelerated Sarcopenia Phenotype in the DJ-1/ Park7-Knockout Zebrafish

DJ-1/ Park7 基因敲除斑马鱼的加速性肌肉减少症表型

阅读:7
作者:Kristine O Rostad, Tobias Trognitz, Ann Kristin Frøyset, Ersilia Bifulco, Kari E Fladmark

Abstract

Age-dependent loss of muscle mass and function is associated with oxidative stress. DJ-1/Park7 acts as an antioxidant through multiple signalling pathways. DJ-1-knockout zebrafish show a decline in swimming performance and loss of weight gain between 6 and 9 months of age. Here, we address the degree to which this is associated with muscle degeneration and identify molecular changes preceding dysregulation of muscle performance. Loss of DJ-1 reduced the skeletal muscle fibre cross-section area. The highly mitochondrial-dependent red slow muscle was more affected than the white muscle, and degeneration of sub-sarcolemma red muscle mitochondria was observed. Using TandemMassTag-based quantitative proteomics, we identified a total of 3721 proteins in the multiplex sample of 4 and 12-month-old muscles. A total of 68 proteins, mainly associated with inflammation and mitochondrial function, were dysregulated in the young DJ-1-null adults, with Annexin A3, Sphingomyelin phosphodiesterase acid-like 3B, Complement C3a, and 2,4-dienoyl CoA reductase 1 being the most affected. The loss of DJ-1 also accelerated molecular features associated with sarcopenia, such as a decrease in the NAD+/NADH ratio and a reduction in Prostaglandin reductase 2 and Cytosolic glycerol-3-phosphate dehydrogenase levels. In view of the experimental power of zebrafish, the DJ-1-null zebrafish makes a valuable model for understanding the connection between oxidative stress and age-dependent muscle loss and function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。