Methodologies for 176Lu-176Hf Analysis of Zircon Grains from the Moon and Beyond

月球及其他地区锆石颗粒 176Lu-176Hf 分析方法

阅读:23
作者:Xi Chen, Nicolas Dauphas, Zhe J Zhang, Blair Schoene, Melanie Barboni, Ingo Leya, Junjun Zhang, Dawid Szymanowski, Kevin D McKeegan

Abstract

Zircons are found in extraterrestrial rocks from the Moon, Mars, and some differentiated meteorite parent-bodies. These zircons are rare, often of small size, and have been affected by neutron capture induced by cosmic ray exposure. The application of the 176Lu-176Hf decay system to zircons from planetary bodies such as the Moon can help establish the chronology of large-scale differentiation processes such as the crystallization of the lunar magma ocean. Here, we present methods to measure the isotopic composition of Hf of extraterrestrial zircons dated using ID-TIMS U-Pb after chemical abrasion. We introduce a 2-stage elution scheme to separate Hf from Zr while preserving the unused Zr fraction for future isotopic analysis. The effect of neutron capture is also re-examined using the latest thermal neutron capture cross sections and epithermal resonance integrals. Our tests show that the precision of Hf isotopic analyses is close to what is theoretically attainable. We have tested this method to a limited set of zircon grains from lunar rocks returned by the Apollo missions (lunar soil 14163, fragmental polymict breccia 72275, and clast-rich breccia 14321). The model ages align with previously reported values, but further work is needed to assess the chronology of lunar magma ocean crystallization as only a handful of small zircons (5 zircons from 3 samples) were analyzed, and the precision of the analyses can be improved by measuring more and larger lunar zircon grains.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。