Autophagy activated by tuberin/mTOR/p70S6K suppression is a protective mechanism against local anaesthetics neurotoxicity

通过抑制马铃薯球蛋白/mTOR/p70S6K 激活自噬是抵御局部麻醉药神经毒性的保护机制

阅读:10
作者:Jingwei Xiong, Qiuyue Kong, Leyang Dai, He Ma, Xiaofei Cao, Li Liu, Zhengnian Ding

Abstract

The local anaesthetics (LAs) are widely used for peripheral nerve blocks, epidural anaesthesia, spinal anaesthesia and pain management. However, exposure to LAs for long duration or at high dosage can provoke potential neuronal damages. Autophagy is an intracellular bulk degradation process for proteins and organelles. However, both the effects of LAs on autophagy in neuronal cells and the effects of autophagy on LAs neurotoxicity are not clear. To answer these questions, both lipid LAs (procaine and tetracaine) and amide LAs (bupivacaine, lidocaine and ropivacaine) were administrated to human neuroblastoma SH-SY5Y cells. Neurotoxicity was evaluated by MTT assay, morphological alterations and median death dosage. Autophagic flux was estimated by autolysosome formation (dual fluorescence LC3 assay), LC3-II generation and p62 protein degradation (immunoblotting). Signalling alterations were examined by immunoblotting analysis. Inhibition of autophagy was achieved by transfection with beclin-1 siRNA. We observed that LAs decreased cell viability in a dose-dependent manner. The neurotoxicity of LAs was tetracaine > bupivacaine > ropivacaine > procaine > lidocaine. LAs increased autophagic flux, as reflected by increases in autolysosome formation and LC3-II generation, and decrease in p62 levels. Moreover, LAs inhibited tuberin/mTOR/p70S6K signalling, a negative regulator of autophagy activation. Most importantly, autophagy inhibition by beclin-1 knockdown exacerbated the LAs-provoked cell damage. Our data suggest that autophagic flux was up-regulated by LAs through inhibition of tuberin/mTOR/p70S6K signalling, and autophagy activation served as a protective mechanism against LAs neurotoxicity. Therefore, autophagy manipulation could be an alternative therapeutic intervention to prevent LAs-induced neuronal damage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。