A crystal glass-nanostructured Al-based electrocatalyst for hydrogen evolution reaction

用于析氢反应的晶体玻璃-纳米结构铝基电催化剂

阅读:5
作者:Sida Liu, Hongkun Li, Jing Zhong, Kai Xu, Ge Wu, Chang Liu, Binbin Zhou, Yang Yan, Lanxi Li, Wenhao Cha, Keke Chang, Yang Yang Li, Jian Lu

Abstract

Platinum-based catalysts are widely used in hydrogen evolution reactions; however, their applications are restricted because of the cost-efficiency trade-off. Here, we present a thermodynamics-based design strategy for synthesizing an Al73Mn7Ru20 (atomic %) metal catalyst via combinatorial magnetron co-sputtering. The new electrocatalyst is composed of ~2 nanometers of medium-entropy nanocrystals surrounded by ~2 nanometers of amorphous regions. The catalyst exhibits exceptional performance, similar to that of single-atom catalysts and better than that of nanocluster-based catalysts. We use aluminum rather than a noble metal as the principal element of the catalyst and ruthenium, which is cheaper than platinum, as the noble metal component. The design strategy provides an efficient route for the development of electrocatalysts for use in large-scale hydrogen production. Moreover, the superior hydrogen reaction evolution created by the synergistic effect of the nano-dual-phase structure is expected to guide the development of high-performance catalysts in other alloy systems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。