Antagonism of histamine H3 receptor promotes angiogenesis following focal cerebral ischemia

组胺 H3 受体拮抗剂促进局灶性脑缺血后血管生成

阅读:5
作者:Li-Shi Fan #, You-Chao Chen #, Ru-Jia Liao, Yan-Yan Zhao, Xiang-Nan Zhang, Zhong Chen, Lei Jiang, Wei-Wei Hu

Abstract

Our previous study showed that H3 receptor antagonists reduced neuronal apoptosis and cerebral infarction in the acute stage after cerebral ischemia, but through an action independent of activation of histaminergic neurons. Because enhanced angiogenesis facilitates neurogenesis and neurological recovery after ischemic stroke, we herein investigated whether antagonism of H3R promoted angiogenesis after brain ischemia. Photothrombotic stroke was induced in mice. We showed that administration of H3R antagonist thioperamide (THIO, 10 mg·kg-1·d-1, i.p., from D1 after cerebral ischemia) significantly improved angiogenesis assessed on D14, and attenuated neurological defects on D28 after cerebral ischemia. Compared with wild-type mice, Hrh3-/- mice displayed more blood vessels in the ischemic boundary zone on D14, and THIO administration did not promote angiogenesis in these knockout mice. THIO-promoted angiogenesis in mice was reversed by i.c.v. injection of H3R agonist immepip, but not by H1 and H2 receptor antagonists, histidine decarboxylase inhibitor α-fluoromethylhistidine, or histidine decarboxylase gene knockout (HDC-/-), suggesting that THIO-promoted angiogenesis was independent of activation of histaminergic neurons. In vascular endothelial cells (bEnd.3), THIO (10-9-10-7 M) dose-dependently facilitated cell migration and tube formation after oxygen glucose deprivation (OGD), and H3R knockdown caused similar effects. We further revealed that H3R antagonism reduced the interaction between H3R and Annexin A2, while knockdown of Annexin A2 abrogated THIO-promoted angiogenesis in bEnd.3 cells after OGD. Annexin A2-overexpressing mice displayed more blood vessels in the ischemic boundary zone, which was reversed by i.c.v. injection of immepip. In conclusion, this study demonstrates that H3R antagonism promotes angiogenesis after cerebral ischemia, which is independent of activation of histaminergic neurons, but related to the H3R on vascular endothelial cells and its interaction with Annexin A2. Thus, H3R antagonists might be promising drug candidates to improve angiogenesis and neurological recovery after ischemic stroke.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。