Microbiome diversity and metabolic capacity determines the trophic ecology of the holobiont in Caribbean sponges

微生物群多样性和代谢能力决定了加勒比海绵中全生物的营养生态

阅读:4
作者:Michael P Lesser, M Sabrina Pankey, Marc Slattery, Keir J Macartney, Deborah J Gochfeld

Abstract

Sponges are increasingly recognized as an ecologically important taxon on coral reefs, representing significant biomass and biodiversity where sponges have replaced scleractinian corals. Most sponge species can be divided into two symbiotic states based on symbiont community structure and abundance (i.e., the microbiome), and are characterized as high microbial abundance (HMA) or low microbial abundance (LMA) sponges. Across the Caribbean, sponge species of the HMA or LMA symbiotic states differ in metabolic capacity, as well as their trophic ecology. A metagenetic analysis of symbiont 16 S rRNA and metagenomes showed that HMA sponge microbiomes are more functionally diverse than LMA microbiomes, offer greater metabolic functional capacity and redundancy, and encode for the biosynthesis of secondary metabolites. Stable isotope analyses showed that HMA and LMA sponges primarily consume dissolved organic matter (DOM) derived from external autotrophic sources, or live particulate organic matter (POM) in the form of bacterioplankton, respectively, resulting in a low degree of resource competition between these symbiont states. As many coral reefs have undergone phase shifts from coral- to macroalgal-dominated reefs, the role of DOM, and the potential for future declines in POM due to decreased picoplankton productivity, may result in an increased abundance of chemically defended HMA sponges on tropical coral reefs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。