Endocrine and Metabolic Impact of Oral Ingestion of a Carob-Pod-Derived Natural-Syrup-Containing D-Pinitol: Potential Use as a Novel Sweetener in Diabetes

口服含有 D-松醇的角豆荚天然糖浆对内分泌和代谢的影响:作为糖尿病新型甜味剂的潜在用途

阅读:6
作者:Juan A Navarro, Juan Decara, Dina Medina-Vera, Ruben Tovar, Antonio J Lopez-Gambero, Juan Suarez, Francisco Javier Pavón, Antonia Serrano, Marialuisa de Ceglia, Carlos Sanjuan, Yolanda Alfonso Baltasar, Elena Baixeras, Fernando Rodríguez de Fonseca

Abstract

The widespread use of added sugars or non-nutritive sweeteners in processed foods is a challenge for addressing the therapeutics of obesity and diabetes. Both types of sweeteners generate health problems, and both are being blamed for multiple complications associated with these prevalent diseases. As an example, fructose is proven to contribute to obesity and liver steatosis, while non-nutritive sweeteners generate gut dysbiosis that complicates the metabolic control exerted by the liver. The present work explores an alternative approach for sweetening through the use of a simple carob-pod-derived syrup. This sweetener consists of a balanced mixture of fructose (47%) and glucose (45%), as sweetening sugars, and a functional natural ingredient (D-Pinitol) at a concentration (3%) capable of producing active metabolic effects. The administration of this syrup to healthy volunteers (50 g of total carbohydrates) resulted in less persistent glucose excursions, a lower insulin response to the hyperglycemia produced by its ingestion, and an enhanced glucagon/insulin ratio, compared to that observed after the ingestion of 50 g of glucose. Daily administration of the syrup to Wistar rats for 10 days lowered fat depots in the liver, reduced liver glycogen, promoted fat oxidation, and was devoid of toxic effects. In addition, this repeated administration of the syrup improved glucose handling after a glucose (2 g/kg) load. Overall, this alternative functional sweetener retains the natural palatability of a glucose/fructose syrup while displaying beneficial metabolic effects that might serve to protect against the progression towards complicated obesity, especially the development of liver steatosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。