Synthesis of hierarchical metal nanostructures with high electrocatalytic surface areas

具有高电催化表面积的分级金属纳米结构的合成

阅读:6
作者:Lucy Gloag, Agus R Poerwoprajitno, Soshan Cheong, Zeno R Ramadhan, Tadafumi Adschiri, J Justin Gooding, Richard D Tilley

Abstract

3D interconnected structures can be made with molecular precision or with micrometer size. However, there is no strategy to synthesize 3D structures with dimensions on the scale of tens of nanometers, where many unique properties exist. Here, we bridge this gap by building up nanosized gold cores and nickel branches that are directly connected to create hierarchical nanostructures. The key to this approach is combining cubic crystal-structured cores with hexagonal crystal-structured branches in multiple steps. The dimensions and 3D morphology can be controlled by tuning at each synthetic step. These materials have high surface area, high conductivity, and surfaces that can be chemically modified, which are properties that make them ideal electrocatalyst supports. We illustrate the effectiveness of the 3D nanostructures as electrocatalyst supports by coating with nickel-iron oxyhydroxide to achieve high activity and stability for oxygen evolution reaction. This work introduces a synthetic concept to produce a new type of high-performing electrocatalyst support.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。