Integrated metabolomic and transcriptomic analyses of flavonoid accumulation in different cultivars of Platostoma palustre

不同品种沼泽口藻中黄酮类化合物积累的综合代谢组学和转录组学分析

阅读:8
作者:Jiankai You #, Zhongdong Wang #, Lishan Zeng, Yimeng Xia, Ying Lin, Ruoting Zhan, Guifang Zhang

Background

Platostoma palustre is a kind of plant resource with medicinal and food value, which has been differentiated into many different varieties after a long period of breeding. The cultivars of Taiwan(TW) and Pingyuan(PY) are widely grown in Guangdong, but a clear basis for species differentiation has not yet been established, resulting in the mixing of different species which limits their production and application.

Conclusion

The phenylpropanoid pathway affects the synthesis of secondary metabolites, resulting in functional differences. In this study, metabolomic and transcriptomic analyses were performed to elucidate the regulatory mechanisms of flavonoid synthesis in P. palustre and to provide a theoretical basis for the identification, differentiation and breeding cultivation of different cultivars of P. palustre.

Results

Regarding leaf surface morphology, the TW exhibited greater leaf area, non-glandular hairs, and the number of stomata than the PY. Regarding chemical activities, the TW exhibited higher total flavonoid content and antioxidant activity than the PY. In metabolomics, a total of 85 DAMs were detected, among which four flavonoid DAMs were identified, all of which were up-regulated in TW expression. Transcriptome analysis identified 2503 DEGs, which were classified according to their functional roles. The results demonstrated that the DEGs were primarily involved in amino acid metabolism, carbohydrate metabolism, sorting and degradation. A total 536 transcription factors (TFs) were identified, of which bHLH and MYB were the top two most abundant TFs families. Combined analysis of metabolome and transcriptome indicated that the phenylpropanoid pathway plays a significant role in flavonoid synthesis. Furthermore, real-time fluorescence qrt-PCR validation demonstrated that the expression trend of 10 DEGs was consistent with the transcriptomics data.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。