Leakless end-to-end transport of small molecules through micron-length DNA nanochannels

通过微米长度的 DNA 纳米通道实现小分子的无泄漏端到端运输

阅读:24
作者:Yi Li, Christopher Maffeo, Himanshu Joshi, Aleksei Aksimentiev, Brice Ménard, Rebecca Schulman

Abstract

Designed and engineered protein and DNA nanopores can be used to sense and characterize single molecules and control transmembrane transport of molecular species. However, designed biomolecular pores are less than 100 nm in length and are used primarily for transport across lipid membranes. Nanochannels that span longer distances could be used as conduits for molecules between nonadjacent compartments or cells. Here, we design micrometer-long, 7-nm-diameter DNA nanochannels that small molecules can traverse according to the laws of continuum diffusion. Binding DNA origami caps to channel ends eliminates transport and demonstrates that molecules diffuse from one channel end to the other rather than permeating through channel walls. These micrometer-length nanochannels can also grow, form interconnects, and interface with living cells. This work thus shows how to construct multifunctional, dynamic agents that control molecular transport, opening ways of studying intercellular signaling and modulating molecular transport between synthetic and living cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。