Machine Learning-Enabled Prediction of 3D-Printed Microneedle Features

机器学习助力 3D 打印微针特征预测

阅读:5
作者:Misagh Rezapour Sarabi, M Munzer Alseed, Ahmet Agah Karagoz, Savas Tasoglu

Abstract

Microneedles (MNs) introduced a novel injection alternative to conventional needles, offering a decreased administration pain and phobia along with more efficient transdermal and intradermal drug delivery/sample collecting. 3D printing methods have emerged in the field of MNs for their time- and cost-efficient manufacturing. Tuning 3D printing parameters with artificial intelligence (AI), including machine learning (ML) and deep learning (DL), is an emerging multidisciplinary field for optimization of manufacturing biomedical devices. Herein, we presented an AI framework to assess and predict 3D-printed MN features. Biodegradable MNs were fabricated using fused deposition modeling (FDM) 3D printing technology followed by chemical etching to enhance their geometrical precision. DL was used for quality control and anomaly detection in the fabricated MNAs. Ten different MN designs and various etching exposure doses were used create a data library to train ML models for extraction of similarity metrics in order to predict new fabrication outcomes when the mentioned parameters were adjusted. The integration of AI-enabled prediction with 3D printed MNs will facilitate the development of new healthcare systems and advancement of MNs' biomedical applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。