Single-Chain Mechanical Properties of Gelatin: A Single-Molecule Study

明胶单链机械性质:单分子研究

阅读:4
作者:Lu Qian, Kai Zhang, Xin Guo, Junyu Zhou, Miao Yu

Abstract

Gelatin is an important natural biological resource with a wide range of applications in the pharmaceutical, industrial and food industries. We investigated the single-chain behaviors of gelatin by atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS), and found that gelatin exists as long chains by fitting with the M-FJC model. By comparing the single-chain elasticity in a nonpolar organic solvent (nonane) and DI water, it was surprising to find that there was almost no difference in the single-chain elasticity of gelatin in nonane and DI water. Considering the specificity of gelatin solubility and the solvent size effect of nonane molecules, when a single gelatin chain is pulled into loose nonane, dehydration does not occur due to strong binding water interactions. Gelatin chains can only interact with water molecules at high temperatures; therefore, no further interaction of single gelatin chains with water molecules occurred at the experimental temperature. This eventually led to almost no difference in the single-chain F-E curves under the two conditions. It is expected that our study will enable the deep exploration of the interaction between water molecules and gelatin and provide a theoretical basis and experimental foundation for the design of gelatin-based materials with more functionalities.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。