Chemical Modification of Reducing End-Groups in Cellulose Nanocrystals

纤维素纳米晶体中还原端基的化学改性

阅读:6
作者:Katja Heise, Gwendoline Delepierre, Alistair W T King, Mauri A Kostiainen, Justin Zoppe, Christoph Weder, Eero Kontturi

Abstract

Native plant cellulose has an intrinsic supramolecular structure. Consequently, it can be isolated as nanocellulose species, which can be utilized as building blocks for renewable nanomaterials. The structure of cellulose also permits its end-wise modification, i.e., chemical reactions exclusively on one end of a cellulose chain or a nanocellulose particle. The premises for end-wise modification have been known for decades. Nevertheless, different approaches for the reactions have emerged only recently, because of formidable synthetic and analytical challenges associated with the issue, including the adverse reactivity of the cellulose reducing end and the low abundance of newly introduced functionalities. This Review gives a full account of the scientific underpinnings and challenges related to end-wise modification of cellulose nanocrystals. Furthermore, we present how the chemical modification of cellulose nanocrystal ends may be applied to directed assembly, resulting in numerous possibilities for the construction of new materials, such as responsive liquid crystal templates and composites with tailored interactions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。