In Situ Nanoscale Investigation of Step Retreat on Fluoranthene Crystal Surfaces

荧蒽晶体表面台阶后退的原位纳米级研究

阅读:4
作者:Claudia-Corina Giese, Helen E King, Martijn P A van den Ende, Oliver Plümper, Inge Loes Ten Kate, Alexander G G M Tielens

Abstract

Fluoranthene, a polycyclic aromatic hydrocarbon, has been detected on Earth as well as in asteroids and meteorites and may have played a role in the formation of life. Increasing the ionic strength of aqueous solutions has been observed to lower the fluoranthene solubility, but it is unclear how solution composition controls the release rate of fluoranthene to an aqueous solution. To elucidate this, we performed in situ atomic force microscopy experiments in which we characterized the sublimation and dissolution behavior of fluoranthene crystal surfaces. From this, we quantify the step retreat rate upon exposure to air, deionized water, and a 0.4 M NaCl or 0.1 M MgSO4 solution. Surface roughness is the main factor that determines the dissolution or sublimation rate. The results imply that during fluoranthene remediation or breakdown in meteorites and asteroids, ionic strength will be more important than chemical composition for controlling fluoranthene release into solution.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。