Magnolol inhibits myotube atrophy induced by cancer cachexia through myostatin signaling pathway in vitro

厚朴酚体外通过肌生长抑制素信号通路抑制癌症恶病质引起的肌管萎缩

阅读:7
作者:Zhijuan Ge, Dong Liu, Yue Shang, Yi Li, Shu-Zhen Chen

Abstract

Cancer cachexia is a complex and multifactorial syndrome that influences about 50-80% of cancer patients and may lead to 20% of cancer deaths and muscle atrophy is the key characteristic of the syndrome. Recent researches have shown that myostatin is a negative regulator in the growth and differentiation of skeletal muscle. Herein, C2C12 cancer cachexia model was established with C26 conditioned culture medium (CCM), then treated with magnolol to evaluate the pharmacological activity of magnolol in myotube atrophy. Our results demonstrated that magnolol inhibited the activity of myostatin promotor and the myostatin signaling pathway. In C2C12 cancer cachexia model, magnolol decreased myostatin expression, inhibited the phosphorylation of SMAD2/3 activated by C26 conditioned culture medium (CCM), and elevated the phosphorylation of FOXO3a lowered by CCM. Myosin heavy chain (MyHC), myogenin (MyoG), and myogenic differentiation (MyoD), as three common myotube markers in C2C12 myotube, were decreased by CCM, which could be effectively reversed by magnolol via activation of AKT/mTOR-regulated protein synthesis and inhibition of ubiquitin-mediated proteolysis. This study reveals that magnolol inhibits myotube atrophy induced by CCM by increasing protein synthesis and decreasing ubiquitin-mediated proteolysis, so that magnolol is a promising leading compound in treating muscle atrophy induced by cancer cachexia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。