Pathological activity of familial Alzheimer's disease-associated mutant presenilin can be executed by six different gamma-secretase complexes

家族性阿尔茨海默病相关突变早老素的病理活性可由六种不同的γ-分泌酶复合物执行

阅读:5
作者:Keiro Shirotani, Masanori Tomioka, Elisabeth Kremmer, Christian Haass, Harald Steiner

Abstract

gamma-Secretase is a protease complex, which catalyzes the final of two subsequent cleavages of the beta-amyloid precursor protein (APP) to release the amyloid-beta peptide (Abeta) implicated in Alzheimer's disease (AD) pathogenesis. In human cells, six gamma-secretase complexes exist, which are composed of either presenilin (PS) 1 or 2, the catalytic subunit, nicastrin, PEN-2, and either APH-1a (as S or L splice variants) or its homolog APH-1b. It is not known whether and how different APH-1 species contribute to the pathogenic activity of gamma-secretase complexes with familial AD (FAD)-associated mutant PS. Here we show that all known gamma-secretase complexes are active in APP processing and that all combinations of APH-1 variants with either FAD mutant PS1 or PS2 support pathogenic Abeta(42) production. Since our data suggest that pathogenic gamma-secretase activity cannot be attributed to a discrete gamma-secretase complex, we propose that all gamma-secretase complexes have to be explored and evaluated for their potential as AD drug target.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。