Engineering of CYP153A33 With Enhanced Ratio of Hydroxylation to Overoxidation Activity in Whole-Cell Biotransformation of Medium-Chain 1-Alkanols

CYP153A33 工程化,提高中链 1-烷醇全细胞生物转化中羟基化与过氧化活性的比率

阅读:7
作者:Hyuna Park, Doyeong Bak, Wooyoung Jeon, Minjung Jang, Jung-Oh Ahn, Kwon-Young Choi

Abstract

α,ω-Dodecanediol is a versatile material that has been widely used not only as an adhesive and crosslinking reagent, but also as a building block in the pharmaceutical and polymer industries. The biosynthesis of α,ω-dodecanediol from fatty derivatives, such as dodecane and dodecanol, requires an ω-specific hydroxylation step using monooxygenase enzymes. An issue with the whole-cell biotransformation of 1-dodecanol using cytochrome P450 monooxygenase (CYP) with ω-specific hydroxylation activity was the low conversion and production of the over-oxidized product of dodecanoic acid. In this study, CYP153A33 from Marinobacter aquaeolei was engineered to obtain higher ω-specific hydroxylation activity through site-directed mutagenesis. The target residue was mutated to increase flux toward α,ω-dodecanediol synthesis, while reducing the generation of the overoxidation product of dodecanoic acid and α,ω-dodecanedioic acid. Among the evaluated variants, CYP153A33 P136A showed a significant increase in 1-dodecanol conversion, i.e., 71.2% (7.12 mM from 10 mM 1-dodecanol), with an increased hydroxylation to over-oxidation activity ratio, i.e., 32.4. Finally, the applicability of this engineered enzyme for ω-specific hydroxylation against several 1-alkanols, i.e., from C6 to C16, was investigated and discussed based on the structure-activity relationship.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。