The SNARE protein FolVam7 mediates intracellular trafficking to regulate conidiogenesis and pathogenicity in Fusarium oxysporum f. sp. lycopersici

SNARE 蛋白 FolVam7 介导细胞内运输以调节番茄尖镰孢菌的分生孢子发生和致病性

阅读:9
作者:Bing Li, Ying Gao, Hui-Ying Mao, Katherine A Borkovich, Shou-Qiang Ouyang

Abstract

Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are conserved in fungi, plants and animals. The Vam7 gene encodes a v-SNARE protein that involved in vesicle trafficking in fungi. Here, we identified and characterized the function of FolVam7, a homologue of the yeast SNARE protein Vam7p in Fusarium oxysporum f. sp. lycopersici (Fol), a fungal pathogen of tomato. FolVam7 contains SNARE and PX (Phox homology) domains that are indispensable for normal localization and function of FolVam7. Targeted gene deletion showed that FolVam7-mediated vesicle trafficking is important for vegetative growth, asexual development, conidial morphology and plant infection. Further cytological examinations revealed that FolVam7 is localized to vesicles and vacuole membranes in the hyphae stage. Moreover, the ΔFolvam7 mutant is insensitive to salt and osmotic stresses and hypersensitive to cell wall stressors. Taken together, our results suggested that FolVam7-mediated vesicle trafficking promotes vegetative growth, conidiogenesis and pathogenicity of Fol.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。