Impact of physical activity on physical function, mitochondrial energetics, ROS production, and Ca2+ handling across the adult lifespan in men

体力活动对男性成年期身体机能、线粒体能量、ROS 生成和 Ca2+ 处理的影响

阅读:4
作者:Marina Cefis, Vincent Marcangeli, Rami Hammad, Jordan Granet, Jean-Philippe Leduc-Gaudet, Pierrette Gaudreau, Caroline Trumpff, Qiuhan Huang, Martin Picard, Mylène Aubertin-Leheudre, Marc Bélanger, Richard Robitaille, José A Morais, Gilles Gouspillou2

Abstract

Aging-related muscle atrophy and weakness contribute to loss of mobility, falls, and disability. Mitochondrial dysfunction is widely considered a key contributing mechanism to muscle aging. However, mounting evidence positions physical activity as a confounding factor, making unclear whether muscle mitochondria accumulate bona fide defects with aging. To disentangle aging from physical activity-related mitochondrial adaptations, we functionally profiled skeletal muscle mitochondria in 51 inactive and 88 active men aged 20-93. Physical activity status confers partial protection against age-related decline in physical performance. Mitochondrial respiration remains unaltered in active participants, indicating that aging per se does not alter mitochondrial respiratory capacity. Mitochondrial reactive oxygen species (ROS) production is unaffected by aging and higher in active participants. In contrast, mitochondrial calcium retention capacity decreases with aging regardless of physical activity and correlates with muscle mass, performance, and the stress-responsive metabokine/mitokine growth differentiation factor 15 (GDF15). Targeting mitochondrial calcium handling may hold promise for treating aging-related muscle impairments.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。