Development and validation of the utLIFE-PC algorithm for noninvasive detection of prostate cancer in urine: A prospective, observational study

utLIFE-PC 算法的开发和验证,用于尿液中前列腺癌的无创检测:一项前瞻性观察性研究

阅读:4
作者:Sujun Han, Mingshuai Wang, Yong Wang, Junlong Wu, Zhaoxia Guo, Huina Wang, Ranlu Liu, Xiaofu Qiu, Linjun Hu, Jianbin Bi, Weigang Yan, Hengqing An, Gejun Zhang, Yi Zhi, Zhiyuan Chen, Libin Chen, Lei Liu, Huanqing Cheng, Shuaipeng Zhu, Meng Wang, Yanrui Zhang, Xiao Liu, Feng Lou, Shanbo Cao, Dingwei Y

Abstract

Overbiopsy is a serious health issue in prostate cancer (PCa) diagnostics. We have developed a urine tumor DNA multidimensional bioinformatic algorithm, utLIFE, to avoid unnecessary biopsy. The objective is to recognize all or clinically significant PCa. Of the 801 participants recruited in our study, 630 are selected for subsequent analysis. In the training cohort (n = 237), utLIFE-PC gets an area under the receiver operating characteristic curve (AUC) of 0.967 and a sensitivity of 85.57% at 95% specificity. In the independent prospective validation cohort (n = 343), utLIFE-PC has an AUC of 0.929, sensitivity of 84.24%, and specificity of 93.26%. Notably, in patients with ≥grade group (GG)2 and ≥GG3, the assay's sensitivity is still excellent (85.33% and 87.10%, respectively). The model shows better performance than prostate-specific antigen (PSA) (p < 0.001) or the single-dimensional biomarkers (methylation, p < 0.001; copy-number variations [CNVs], p < 0.001; mutation, p < 0.001). The utLIFE-PC model can potentially optimize the PCa diagnostic process and avoid unnecessary biopsies. This study was registered at Chinese Clinical Trial Registry: ChiCTR2300071837.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。