Impact of 17β-Estradiol on the Shape, Survival, Osteogenic Transformation, and mRNA Expression of Gingiva-Derived Stem Cell Spheroids

17β-雌二醇对牙龈干细胞球体形状、存活、成骨转化和 mRNA 表达的影响

阅读:9
作者:Ju-Hwan Kim, Hyun-Jin Lee, Hye-Jung Song, Jun-Beom Park

Conclusions

In conclusion, from the results obtained, it can be inferred that 17β-estradiol can be utilized for differentiating stem cell spheroids. Furthermore, the localized and controlled use, potentially through localized delivery systems or biomaterials, can be an area of active research. While 17β-estradiol holds promise for enhancing stem cell applications, any clinical use requires a thorough understanding of its mechanisms, careful control of its dosage and delivery, and extensive testing to ensure safety and efficacy.

Methods

Spheroids made from human gingiva-derived stem cells were cultivated with varying concentrations of 17β-estradiol: 0, 0.01, 0.1, 1, and 10 nM. Morphology was assessed on days 1, 3, and 5. The live/dead kit assay was employed on day 3 for qualitative cell viability, while cell counting kit-8 was used for quantitative viability assessments on days 1, 3, and 5. To evaluate the osteogenic differentiation of the spheroids, a real-time polymerase chain reaction assessed the expressions of RUNX2 and COL1A1 on day 7.

Results

The stem cells formed cohesive spheroids, and the inclusion of 17β-estradiol did not noticeably alter their shape. The spheroid diameter remained consistent across concentrations of 0, 0.01, 0.1, 1, and 10 nM of 17β-estradiol. However, cellular viability was boosted with the addition of 1 and 10 nM of 17β-estradiol. The highest expression levels for RUNX2 and COL1A1 were observed with the introduction of 17β-estradiol at 0.1 nM. Conclusions: In

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。