Integrated Single-Cell and Spatial Transcriptome Reveal Metabolic Gene SLC16A3 as a Key Regulator of Immune Suppression in Hepatocellular Carcinoma

整合的单细胞和空间转录组揭示代谢基因 SLC16A3 是肝细胞癌免疫抑制的关键调节因子

阅读:6
作者:Qianlong Kang, Xiaomeng Yin, Zhenru Wu, Aiping Zheng, Lusi Feng, Xuelei Ma, Li Li

Abstract

Hepatocellular carcinoma (HCC) is one of the most lethal cancers, usually diagnosed at an advanced stage. Metabolic reprogramming plays a significant role in HCC progression, probably related to immune evasion, yet the key gene is unclear. In this study, six metabolism-related genes with prognostic implications were screened. Correlation analysis between the key genes and immune cell subtypes was conducted, and a prominent gene strongly associated with immunosuppression, SLC16A3, was identified. Overexpression of SLC16A3 is associated with the loss of T-cell function and might lead to the upregulation of several immunosuppressive proteins. Gene function enrichment analysis showed genes correlated with SLC16A3 primarily involved in cell adhesion. Single-cell analysis showed that the SLC16A3 gene was mainly expressed in macrophages, especially some tumour-promoting macrophages. Further analysis of spatial transcriptome data indicated that SLC16A3 was enriched at the tumour invasion front. The mIHC revealed that patients with high SLC16A3 expression exhibited significantly reduced infiltration of GZMB+ cells. And SLC16A3 inhibitors significantly suppressed the proliferation of HCC, while simultaneously enhancing T-cell cytotoxicity and reducing exhaustion. These results reveal the phenomenon of immune escape mediated by metabolic reprogramming and suggest that SLC16A3 may serve as a novel target for intervention.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。