Inhibition of prolyl hydroxylases by dimethyloxaloylglycine after stroke reduces ischemic brain injury and requires hypoxia inducible factor-1α

中风后二甲基草酰甘氨酸抑制脯氨酰羟化酶可减少缺血性脑损伤,需要缺氧诱导因子-1α

阅读:7
作者:Molly E Ogle, Xiaohuan Gu, Alyssa R Espinera, Ling Wei

Abstract

Pathological oxygen deprivation inhibits prolyl hydroxylase (PHD) activity and stimulates a protective cellular oxygen-sensing response in part through the stabilization and activation of the Hypoxia Inducible Factor (HIF) 1α transcription factor. The present investigation tested the therapeutic potential of enhanced activation of oxygen-sensing pathways by competitive pharmacologic PHD inhibition after stroke, hypothesizing that post-ischemic PHD inhibition would reduce neuronal cell death and require the activation of HIF-1α. The PHD inhibitor dimethyloxaloylglycine (DMOG, 100 μM) reduced cell death by oxygen glucose deprivation (OGD), an in vitro model of ischemia, and the protection required HIF-1α. In vivo, DMOG (50 mg/kg, i.p.) administered 30 or 60 min after distal occlusion of the middle cerebral artery (MCA) in mice enhanced the activation of HIF-1α protein, enhanced transcription of the HIF-regulated genes vascular endothelial growth factor, erythropoietin, endothelial nitric oxide synthase, and pyruvate dehydrogenase kinase-1, reduced ischemic infarct volume and activation of the pro-apoptotic caspase-3 protein, reduced behavioral deficits after stroke, and reduced the loss of local blood flow in the MCA territory after stroke. Inhibition of HIF-1α in vivo by Digoxin or Acriflavine abrogated the infarct sparing properties of DMOG. These data suggest that supplemental activation of oxygen-sensing pathways after stroke may provide a clinically applicable intervention for the promotion of neurovascular cell survival after ischemia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。