Cytoskeletal toxicity of pectenotoxins in hepatic cells

贝类毒素对肝细胞的细胞骨架毒性

阅读:6
作者:B Espiña, M C Louzao, I R Ares, E Cagide, M R Vieytes, F V Vega, J A Rubiolo, C O Miles, T Suzuki, T Yasumoto, L M Botana

Background and purpose

Pectenotoxins are macrocyclic lactones found in dinoflagellates of the genus Dinophysis, which induce severe liver damage in mice after i.p. injection. Here, we have looked for the mechanism(s) underlying this hepatotoxicity. Experimental approach: Effects of pectenotoxin (PTX)-1, PTX-2, PTX-2 seco acid (PTX-2SA) and PTX-11 were measured in a hepatocyte cell line with cancer cell characteristics (Clone 9) and in primary cultures of rat hepatocytes. Cell morphology was assessed by confocal microscopy; F- and G-actin were selectively stained and cell viability measured by Alamar Blue fluorescence. Key

Purpose

Pectenotoxins are macrocyclic lactones found in dinoflagellates of the genus Dinophysis, which induce severe liver damage in mice after i.p. injection. Here, we have looked for the mechanism(s) underlying this hepatotoxicity. Experimental approach: Effects of pectenotoxin (PTX)-1, PTX-2, PTX-2 seco acid (PTX-2SA) and PTX-11 were measured in a hepatocyte cell line with cancer cell characteristics (Clone 9) and in primary cultures of rat hepatocytes. Cell morphology was assessed by confocal microscopy; F- and G-actin were selectively stained and cell viability measured by Alamar Blue fluorescence. Key

Results

Clone 9 cells and primary hepatocytes showed a marked depolymerization of F-actin with PTX-1, PTX-2 and PTX-11 (1-1000 nM) associated with an increase in G-actin level. However, morphology was only clearly altered in Clone 9 cells. PTX-2SA had no effect on the actin cytoskeleton. Despite the potent F-actin depolymerizing effect, PTX-1, PTX-2 or PTX-11 did not decrease the viability of Clone 9 cells after 24-h treatment. Only prolonged incubation (> 48 h) with PTXs induced a fall in viability, and under these conditions, morphology of both Clone 9 and primary hepatocytes was drastically changed. Conclusions and implications: Although the actin cytoskeleton was clearly altered by PTX-1, PTX-2 and PTX-11 in the hepatocyte cell line and primary hepatocytes, morphological assessments indicated a higher sensitivity of the cancer-like cell line to these toxins. However, viability of both cell types was not altered.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。