Adrenomedullin inhibits osteoclast differentiation through the suppression of receptor activator of nuclear factor-κB ligand-induced nuclear factor-κB activation in glucocorticoid-induced osteoporosis

肾上腺髓质素通过抑制核因子-κB受体激活剂配体诱导的核因子-κB活化来抑制破骨细胞分化,从而治疗糖皮质激素引起的骨质疏松症

阅读:7
作者:Yuanxin Liu, Guilai Zuo, Xin Meng, Xingxiao Gao, Lihai Zhang, Peifu Tang

Abstract

The current study aimed to improve the understanding on the association between adrenomedullin and osteoporosis in mice with glucocorticoid-induced osteoporosis. Bone resorption and osteoporosis-associated indexes, including maximum load, stiffness, energy to failure, ultimate strength, elastic modulus, post-yield displacement and post-yield displacement, in mice with osteoporosis were analyzed in order to evaluate the effect of adrenomedullin. The receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation was investigated subsequent to treatment with adrenomedullin in vitro. The results demonstrated that adrenomedullin significantly improved bone mass loss, density, bone strength and osteoporosis disease in the mice with glucocorticoid-induced osteoporosis. In addition, adrenomedullin markedly improved the osteoporosis-associated NFATc1, TRAP, OSCAR and c-Fos expression levels. Furthermore, the current findings indicated that RANKL-mediated osteoclast differentiation was suppressed in vitro and in vivo. Notably, the data revealed that adrenomedullin significantly improved the osteoporotic symptoms through inhibition of RANKL-induced NF-κB activation in glucocorticoid-induced osteoporosis. In conclusion, adrenomedullin serves an essential role in the progression of glucocorticoid-induced osteoporosis, regulating the bone mass loss, density and strength through the NF-κB signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。