Pre-transplantation of Bone Marrow Mesenchymal Stem Cells Amplifies the Therapeutic Effect of Ultrasound-Targeted Microbubble Destruction-Mediated Localized Combined Gene Therapy in Post-Myocardial Infarction Heart Failure Rats

骨髓间充质干细胞预移植增强超声靶向微泡破坏介导局部联合基因治疗对心肌梗死后心力衰竭大鼠的治疗效果

阅读:8
作者:Wei Wang, Baihetiya Tayier, Lina Guan, Fei Yan, Yuming Mu

Abstract

Although stem cell transplantation and single-gene therapy have been intensively discussed separately as treatments for myocardial infarction (MI) hearts and have exhibited ideal therapeutic efficiency in animal models, clinical trials turned out to be disappointing. Here, we deliver sarcoplasmic reticulum Ca2+-ATPase 2a (SERCA2a) and connexin 43 (Cx43) genes simultaneously via an ultrasound-targeted microbubble destruction (UTMD) approach to chronic MI hearts that have been pre-treated with bone marrow mesenchymal stem cells (BMSCs) to amplify cardiac repair. First, biotinylated microbubbles (BMBs) were fabricated, and biotinylated recombinant adenoviruses carrying the SERCA2a or Cx43 gene were conjugated to the surface of self-assembled BMBs to form SERCA2a-BMBs, Cx43-BMBs or dual gene-loaded BMBs. Then, the general characteristics of these bubbles, including particle size, concentration, contrast signal and gene loading capacity, were examined. Second, a rat myocardial infarction model was created by ligating the left anterior descending coronary artery and injecting BMSCs into the infarct and border zones. Four weeks later, co-delivery of SERCA2a and Cx43 genes to the infarcted heart were delivered together to the infarcted heart using the UTMD approach. Cardiac mechano-electrical function was determined 4 wk after gene transfection, and the infarcted hearts were collected for myocardial infarct size measurement and detection of expression of SERCA2a, Cx43 and cardiac-specific markers. Finally, to validate the role of BMSC transplantation, MI rats transplanted or not with BMSCs were transfected with SERCA2a and Cx43, and the cardiac mechano-electrical function of these two groups of rats was recorded and compared. General characteristics of the self-assembled gene-loaded BMBs were qualified, and the gene loading rate was satisfactory. The self-assembled gene-loaded BMBs were in microscale and exhibit satisfactory dual-gene loading capacity. High transfection efficiency was achieved under ultrasound irradiation in vitro. In addition, rats in which SERCA2a and Cx43 were overexpressed simultaneously had the best contractile function and electrical stability among all experimental groups. Immunofluorescence assay revealed that the levels of SERCA2a and/or Cx43 proteins were significantly elevated, especially in the border zone. Moreover, compared with rats that did not receive BMSCs, rats pre-treated with BMSCs have better mechano-electrical function after transfection with SERCA2a and Cx43. Collectively, we report a promising cardiac repair strategy for post-MI hearts that exploits the providential advantages of stem cell therapy and UTMD-mediated localized co-delivery of specific genes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。