Pterostilbene protects against acute renal ischemia reperfusion injury and inhibits oxidative stress, inducible nitric oxide synthase expression and inflammation in rats via the Toll-like receptor 4/nuclear factor-κB signaling pathway

紫檀芪通过 Toll 样受体 4/核因子-κB 信号通路保护大鼠急性肾缺血再灌注损伤并抑制氧化应激、诱导型一氧化氮合酶表达和炎症

阅读:6
作者:Dan Gao, Sanhui Jing, Qian Zhang, Ge Wu

Abstract

Previous studies have demonstrated that pterostilbene (Pter) prevents oxidative stress, suppresses cell growth and exhibits anti-fungal and anti-inflammatory effects. Pter is used to treat a number of clinical diseases, including Alzheimer's disease, various malignancies and hypercholesteremia. The aim of the present study was to investigate whether Pter protects against acute renal ischemia reperfusion injury (IRI) and inhibits oxidative stress, inducible nitric oxide synthase (iNOS) expression and inflammation in rats. A total of 40 adult male Sprague Dawley rats were divided into the following 5 groups at random: Control group, where rats were not subjected to renal IRI; IRI group, where rats were subjected to renal IRI; Pter 10 group, where rats underwent renal IRI and were treated with 10 mg/kg Pter; Pter 20 group, where rats underwent renal IRI and were treated with 20 mg/kg Pter; Pter 30 group, where rats underwent renal IRI and were treated with 30 mg/kg Pter. The results demonstrated that Pter treatment improved renal function following acute renal IRI. Compared with the untreated renal IRI group, myeloperoxidase, iNOS, interleukin (IL)-1β, IL-6 and tumor necrosis factor-α expression levels were significantly decreased (P<0.01), whereas IL-10 expression levels were significantly increased (P<0.01) following treatment with Pter in acute renal IRI rats. In addition, Pter significantly attenuated caspase-3 activity and the Toll-like receptor 4 (TLR4)/nuclear factor (NF)-κB signaling pathway induced by acute renal IRI (P<0.01). These results provide evidence to suggest that administration of Pter may protect against acute renal IRI and inhibit oxidative stress, iNOS expression and inflammation in rats via the TLR4/NF-κB signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。