Machine Learning Models for Genetic Risk Assessment of Infants with Non-syndromic Orofacial Cleft

用于评估无综合征性颌面裂婴儿遗传风险的机器学习模型

阅读:5
作者:Shi-Jian Zhang, Peiqi Meng, Jieni Zhang, Peizeng Jia, Jiuxiang Lin, Xiangfeng Wang, Feng Chen, Xiaoxing Wei

Abstract

The isolated type of orofacial cleft, termed non-syndromic cleft lip with or without cleft palate (NSCL/P), is the second most common birth defect in China, with Asians having the highest incidence in the world. NSCL/P involves multiple genes and complex interactions between genetic and environmental factors, imposing difficulty for the genetic assessment of the unborn fetus carrying multiple NSCL/P-susceptible variants. Although genome-wide association studies (GWAS) have uncovered dozens of single nucleotide polymorphism (SNP) loci in different ethnic populations, the genetic diagnostic effectiveness of these SNPs requires further experimental validation in Chinese populations before a diagnostic panel or a predictive model covering multiple SNPs can be built. In this study, we collected blood samples from control and NSCL/P infants in Han and Uyghur Chinese populations to validate the diagnostic effectiveness of 43 candidate SNPs previously detected using GWAS. We then built predictive models with the validated SNPs using different machine learning algorithms and evaluated their prediction performance. Our results showed that logistic regression had the best performance for risk assessment according to the area under curve. Notably, defective variants in MTHFR and RBP4, two genes involved in folic acid and vitamin A biosynthesis, were found to have high contributions to NSCL/P incidence based on feature importance evaluation with logistic regression. This is consistent with the notion that folic acid and vitamin A are both essential nutritional supplements for pregnant women to reduce the risk of conceiving an NSCL/P baby. Moreover, we observed a lower predictive power in Uyghur than in Han cases, likely due to differences in genetic background between these two ethnic populations. Thus, our study highlights the urgency to generate the HapMap for Uyghur population and perform resequencing-based screening of Uyghur-specific NSCL/P markers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。