Phototaxis in a wild isolate of the cyanobacterium Synechococcus elongatus

蓝藻 Synechococcus elongatus 野生分离株的趋光性

阅读:10
作者:Yiling Yang, Vinson Lam, Marie Adomako, Ryan Simkovsky, Annik Jakob, Nathan C Rockwell, Susan E Cohen, Arnaud Taton, Jingtong Wang, J Clark Lagarias, Annegret Wilde, David R Nobles, Jerry J Brand, Susan S Golden

Abstract

Many cyanobacteria, which use light as an energy source via photosynthesis, have evolved the ability to guide their movement toward or away from a light source. This process, termed "phototaxis," enables organisms to localize in optimal light environments for improved growth and fitness. Mechanisms of phototaxis have been studied in the coccoid cyanobacterium Synechocystis sp. strain PCC 6803, but the rod-shaped Synechococcus elongatus PCC 7942, studied for circadian rhythms and metabolic engineering, has no phototactic motility. In this study we report a recent environmental isolate of S. elongatus, the strain UTEX 3055, whose genome is 98.5% identical to that of PCC 7942 but which is motile and phototactic. A six-gene operon encoding chemotaxis-like proteins was confirmed to be involved in phototaxis. Environmental light signals are perceived by a cyanobacteriochrome, PixJSe (Synpcc7942_0858), which carries five GAF domains that are responsive to blue/green light and resemble those of PixJ from Synechocystis Plate-based phototaxis assays indicate that UTEX 3055 uses PixJSe to sense blue and green light. Mutation of conserved functional cysteine residues in different GAF domains indicates that PixJSe controls both positive and negative phototaxis, in contrast to the multiple proteins that are employed for implementing bidirectional phototaxis in Synechocystis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。