Targeting miR-193a-AML1-ETO-β-catenin axis by melatonin suppresses the self-renewal of leukaemia stem cells in leukaemia with t (8;21) translocation

褪黑激素靶向 miR-193a-AML1-ETO-β-catenin 轴可抑制 t(8;21) 易位白血病中白血病干细胞的自我更新

阅读:14
作者:Bin Zhou, Haige Ye, Chongyun Xing, Bin Liang, Haiying Li, Linling Chen, Xingzhou Huang, Yanfei Wu, Shenmeng Gao

Abstract

AML1-ETO, the most common fusion oncoprotein by t (8;21) in acute myeloid leukaemia (AML), enhances hematopoietic self-renewal and leukemogenesis. However, currently no specific therapies have been reported for t (8;21) AML patients as AML1-ETO is still intractable as a pharmacological target. For this purpose, leukaemia cells and AML1-ETO-induced murine leukaemia model were used to investigate the degradation of AML1-ETO by melatonin (MLT), synthesized and secreted by the pineal gland. MLT remarkedly decreased AML1-ETO protein in leukemic cells. Meanwhile, MLT induced apoptosis, decreased proliferation and reduced colony formation. Furthermore, MLT reduced the expansion of human leukemic cells and extended the overall survival in U937T-AML1-ETO-xenografted NSG mice. Most importantly, MLT reduced the infiltration of leukaemia blasts, decreased the frequency of leukaemia stem cells (LSCs) and prolonged the overall survival in AML1-ETO-induced murine leukaemia. Mechanistically, MLT increased the expression of miR-193a, which inhibited AML1-ETO expression via targeting its putative binding sites. Furthermore, MLT decreased the expression of β-catenin, which is required for the self-renewal of LSC and is the downstream of AML1-ETO. Thus, MLT presents anti-self-renewal of LSC through miR-193a-AML1-ETO-β-catenin axis. In conclusion, MLT might be a potential treatment for t (8;21) leukaemia by targeting AML1-ETO oncoprotein.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。