Pleiotropic, heart rate-independent cardioprotection by ivabradine

伊伐布雷定具有多效性、心率独立的心脏保护作用

阅读:6
作者:P Kleinbongard, N Gedik, P Witting, B Freedman, N Klöcker, G Heusch

Background and purpose

In pigs, ivabradine reduces infarct size even when given only at reperfusion and in the absence of heart rate reduction. The mechanism of this non-heart rate-related cardioprotection is unknown. Hence, in the present study we assessed the pleiotropic action of ivabradine in more detail. Experimental approach: Anaesthetized mice were pretreated with ivabradine (1.7 mg · kg(-1) i.v.) or placebo (control) before a cycle of coronary occlusion/reperfusion (30/120 min ± left atrial pacing). Infarct size was determined. Isolated ventricular cardiomyocytes were exposed to simulated ischaemia/reperfusion (60/5 min) in the absence and presence of ivabradine, viability was then quantified and intra- and extracellular reactive oxygen species (ROS) formation was detected. Mitochondria were isolated from mouse hearts and exposed to simulated ischaemia/reperfusion (6/3 min) in glutamate/malate- and ADP-containing buffer in the absence and presence of ivabradine respectively. Mitochondrial respiration, extramitochondrial ROS, mitochondrial ATP production and calcium retention capacity (CRC) were assessed. Key

Purpose

In pigs, ivabradine reduces infarct size even when given only at reperfusion and in the absence of heart rate reduction. The mechanism of this non-heart rate-related cardioprotection is unknown. Hence, in the present study we assessed the pleiotropic action of ivabradine in more detail. Experimental approach: Anaesthetized mice were pretreated with ivabradine (1.7 mg · kg(-1) i.v.) or placebo (control) before a cycle of coronary occlusion/reperfusion (30/120 min ± left atrial pacing). Infarct size was determined. Isolated ventricular cardiomyocytes were exposed to simulated ischaemia/reperfusion (60/5 min) in the absence and presence of ivabradine, viability was then quantified and intra- and extracellular reactive oxygen species (ROS) formation was detected. Mitochondria were isolated from mouse hearts and exposed to simulated ischaemia/reperfusion (6/3 min) in glutamate/malate- and ADP-containing buffer in the absence and presence of ivabradine respectively. Mitochondrial respiration, extramitochondrial ROS, mitochondrial ATP production and calcium retention capacity (CRC) were assessed. Key

Results

Ivabradine decreased infarct size even with atrial pacing. Cardiomyocyte viability after simulated ischaemia/reperfusion was better preserved with ivabradine, the accumulation of intra- and extracellular ROS decreased in parallel. Mitochondrial complex I respiration was not different without/with ivabradine, but ivabradine significantly inhibited the accumulation of extramitochondrial ROS, increased mitochondrial ATP production and increased CRC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。