Electrografting a Hybrid Bilayer Membrane via Diazonium Chemistry for Electrochemical Impedance Spectroscopy of Amyloid-β Aggregation

通过重氮化学电接枝混合双层膜用于淀粉样β蛋白聚集的电化学阻抗谱

阅读:6
作者:Hamid Fini, Qusai Hassan, Meissam Noroozifar, Kagan Kerman

Abstract

Herein, a novel hybrid bilayer membrane is introduced as a platform to study the aggregation of amyloid-β1-42 (Aβ1-42) peptide on surfaces. The first layer was covalently attached to a glassy carbon electrode (GCE) via diazonium electrodeposition, which provided a highly stable template for the hybrid bilayer formation. To prepare the long-chain hybrid bilayer membrane (lcHBLM)-modified electrodes, GCE surfaces were modified with 4-dodecylbenzenediazonium (DDAN) followed by the modification with dihexadecyl phosphate (DHP) as the second layer. For the preparation of short-chain hybrid bilayer membrane (scHBLM)-modified electrodes, GCE surfaces were modified with 4-ethyldiazonium (EDAN) as the first layer and bis(2-ethylhexyl) phosphate (BEHP) was utilized as the second layer. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were used to characterize the bilayer formation. Both positively charged [Ru(NH3)6]3+ and negatively charged ([Fe(CN)6]3-/4-) redox probes were used for electrochemical characterization of the modified surfaces using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). EIS results showed a decrease in charge transfer resistance (Rct) upon incubation of Aβ1-42 on the hybrid bilayer-modified surfaces. This framework provides a promising electrochemical platform for designing hybrid bilayers with various physicochemical properties to study the interaction of membrane-bound receptors and biomolecules on surfaces.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。