Intrinsic protein kinase activity in mitochondrial oxidative phosphorylation complexes

线粒体氧化磷酸化复合物中的内在蛋白激酶活性

阅读:4
作者:Darci Phillips, Angel M Aponte, Raul Covian, Robert S Balaban

Abstract

Mitochondrial protein phosphorylation is a well-recognized metabolic control mechanism, with the classical example of pyruvate dehydrogenase (PDH) regulation by specific kinases and phosphatases of bacterial origin. However, despite the growing number of reported mitochondrial phosphoproteins, the identity of the protein kinases mediating these phosphorylation events remains largely unknown. The detection of mitochondrial protein kinases is complicated by the low concentration of kinase relative to that of the target protein, the lack of specific antibodies, and contamination from associated, but nonmatrix, proteins. In this study, we use blue native gel electrophoresis (BN-PAGE) to isolate rat and porcine heart mitochondrial complexes for screening of protein kinase activity. To detect kinase activity, one-dimensional BN-PAGE gels were exposed to [γ-(32)P]ATP and then followed by sodium dodecyl sulfate gel electrophoresis. Dozens of mitochondrial proteins were labeled with (32)P in this setting, including all five complexes of oxidative phosphorylation and several citric acid cycle enzymes. The nearly ubiquitous (32)P protein labeling demonstrates protein kinase activity within each mitochondrial protein complex. The validity of this two-dimensional BN-PAGE method was demonstrated by detecting the known PDH kinases and phosphatases within the PDH complex band using Western blots and mass spectrometry. Surprisingly, these same approaches detected only a few additional conventional protein kinases, suggesting a major role for autophosphorylation in mitochondrial proteins. Studies on purified Complex V and creatine kinase confirmed that these proteins undergo autophosphorylation and, to a lesser degree, tenacious (32)P-metabolite association. In-gel Complex IV activity was shown to be inhibited by ATP, and partially reversed by phosphatase activity, consistent with an inhibitory role for protein phosphorylation in this complex. Collectively, this study proposes that many of the mitochondrial complexes contain an autophosphorylation mechanism, which may play a functional role in the regulation of these multiprotein units.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。