Trapping and dissociation of propafenone derivatives in HERG channels

普罗帕酮衍生物在 HERG 通道中的捕获和解离

阅读:4
作者:A Windisch, En Timin, T Schwarz, D Stork-Riedler, T Erker, Gf Ecker, S Hering

Background and purpose

Human ether-a-go-go related gene (HERG) channel inhibitors may be subdivided into compounds that are trapped in the closed channel conformation and others that dissociate at rest. The structural peculiarities promoting resting state dissociation from HERG channels are currently unknown. A small molecule-like propafenone is efficiently trapped in the closed HERG channel conformation. The aim of this study was to identify structural moieties that would promote dissociation of propafenone derivatives. Experimental approach: Human ether-a-go-go related gene channels were heterologously expressed in Xenopus oocytes and potassium currents were recorded using the two-microelectrode voltage clamp technique. Recovery from block by 10 propafenone derivatives with variable side chains, but a conserved putative pharmacophore, was analysed. Key

Purpose

Human ether-a-go-go related gene (HERG) channel inhibitors may be subdivided into compounds that are trapped in the closed channel conformation and others that dissociate at rest. The structural peculiarities promoting resting state dissociation from HERG channels are currently unknown. A small molecule-like propafenone is efficiently trapped in the closed HERG channel conformation. The aim of this study was to identify structural moieties that would promote dissociation of propafenone derivatives. Experimental approach: Human ether-a-go-go related gene channels were heterologously expressed in Xenopus oocytes and potassium currents were recorded using the two-microelectrode voltage clamp technique. Recovery from block by 10 propafenone derivatives with variable side chains, but a conserved putative pharmacophore, was analysed. Key

Results

We have identified structural determinants of propafenone derivatives that enable drug dissociation from the closed channel state. Propafenone and four derivatives with 'short' side chains were trapped in the closed channel. Five out of six bulky derivatives efficiently dissociated from the channel at rest. One propafenone derivative with a similar bulk but lacking an H-bond acceptor in this region was trapped. Correlations were observed between molecular weight and onset of channel block as well as between pK(a) and recovery at rest.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。