Analyses of key mRNAs and lncRNAs for different osteo-differentiation potentials of periodontal ligament stem cell and gingival mesenchymal stem cell

牙周膜干细胞与牙龈间充质干细胞不同骨分化潜能的关键mRNA和lncRNA分析

阅读:6
作者:Linglu Jia, Yunpeng Zhang, Dongfang Li, Wenjing Zhang, Dongjiao Zhang, Xin Xu

Abstract

Both human periodontal ligament stem cells (hPDLSCs) and human gingival mesenchymal stem cells (hGMSCs) are candidate seed cells for bone tissue engineering, but the osteo-differentiation ability of the latter is weaker than the former, and the mechanisms are unknown. To explore the potential regulation of mRNAs and long non-coding RNAs (lncRNAs), this study obtained the gene expression profiles of hPDLSCs and hGMSCs in both undifferentiated and osteo-differentiated conditions by microarray assay and then analysed the common and specific differentially expressed mRNAs and lncRNAs in hPDLSCs and hGMSCs through bioinformatics method. The results showed that 275 mRNAs and 126 lncRNAs displayed similar changing patterns in hPDLSCs and hGMSCs after osteogenic induction, which may regulate the osteo-differentiation in both types of cells. In addition, the expression of 223 mRNAs and 238 lncRNAs altered only in hPDLSCs after osteogenic induction, and 177 mRNAs and 170 lncRNAs changed only in hGMSCs. These cell-specific differentially expressed mRNAs and lncRNAs could underlie the different osteo-differentiation potentials of hPDLSCs and hGMSCs. Finally, dickkopf Wnt signalling pathway inhibitor 1 (DKK1) was proved to be one regulator for the weaker osteo-differentiation ability of hGMSCs through validation experiments. We hope these results help to reveal new mRNAs-lncRNAs-based molecular mechanism for osteo-differentiation of hPDLSCs and hGMSCs and provide clues on strategies for improving stem cell-mediated bone regeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。