AlphaScreen HTS and live-cell bioluminescence resonance energy transfer (BRET) assays for identification of Tau-Fyn SH3 interaction inhibitors for Alzheimer disease

AlphaScreen HTS 和活细胞生物发光共振能量转移 (BRET) 检测用于鉴定治疗阿尔茨海默病的 Tau-Fyn SH3 相互作用抑制剂

阅读:5
作者:J Nicholas Cochran, Pauleatha V Diggs, N Miranda Nebane, Lynn Rasmussen, E Lucile White, Robert Bostwick, Joseph A Maddry, Mark J Suto, Erik D Roberson

Abstract

Alzheimer disease (AD) is the most common neurodegenerative disease, and with Americans' increasing longevity, it is becoming an epidemic. There are currently no effective treatments for this disorder. Abnormalities of Tau track more closely with cognitive decline than the most studied therapeutic target in AD, amyloid-β, but the optimal strategy for targeting Tau has not yet been identified. On the basis of considerable preclinical data from AD models, we hypothesize that interactions between Tau and the Src-family tyrosine kinase, Fyn, are pathogenic in AD. Genetically reducing either Tau or Fyn is protective in AD mouse models, and a dominant negative fragment of Tau that alters Fyn localization is also protective. Here, we describe a new AlphaScreen assay and a live-cell bioluminescence resonance energy transfer (BRET) assay using a novel BRET pair for quantifying the Tau-Fyn interaction. We used these assays to map the binding site on Tau for Fyn to the fifth and sixth PXXP motifs to show that AD-associated phosphorylation at microtubule affinity regulating kinase sites increases the affinity of the Tau-Fyn interaction and to identify Tau-Fyn interaction inhibitors by high-throughput screening. This screen has identified a variety of chemically tractable hits, suggesting that the Tau-Fyn interaction may represent a good drug target for AD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。