Effect of pH and concentration on the chemical stability and reaction kinetics of thiamine mononitrate and thiamine chloride hydrochloride in solution

pH和浓度对硝酸硫胺素和盐酸硫胺素盐酸盐化学稳定性和反应动力学的影响

阅读:4
作者:Adrienne L Voelker, Lynne S Taylor, Lisa J Mauer

Abstract

Thiamine (vitamin B1) is an essential micronutrient in the human diet, found both naturally and as a fortification ingredient in many foods and supplements. However, it is susceptible to degradation due to heat, light, alkaline pH, and sulfites, among effects from other food matrix components, and its degradation has both nutritional and sensory implications as in foods. Thiamine storage stability in solution was monitored over time to determine the effect of solution pH and thiamine concentration on reaction kinetics of degradation without the use of buffers, which are known to affect thiamine stability independent of pH. The study directly compared thiamine stability in solutions prepared with different pHs (3 or 6), concentrations (1 or 20 mg/mL), and counterion in solution (NO3-, Cl-, or both), including both commercially available salt forms of thiamine (thiamine mononitrate and thiamine chloride hydrochloride). Solutions were stored at 25, 40, 60, and 80 °C for up to one year, and degradation was quantified by high-performance liquid chromatography (HPLC) over time, which was then used to calculate degradation kinetics. Thiamine was significantly more stable in pH 3 than in pH 6 solutions. In pH 6 solutions, stability was dependent on initial thiamine concentration, with the 20 mg/mL thiamine salt solutions having an increased reaction rate constant (kobs) compared to the 1 mg/mL solutions. In pH 3 solutions, kobs was not dependent on initial concentration, attributed to differences in degradation pathway dependent on pH. Activation energies of degradation (Ea) were higher in pH 3 solutions (21-27 kcal/mol) than in pH 6 solutions (18-21 kcal/mol), indicating a difference in stability and degradation pathway due to pH. The fundamental reaction kinetics of thiamine reported in this study provide a basis for understanding thiamine stability and therefore improving thiamine delivery in many foods containing both natural and fortified thiamine.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。