The Development of Polylactic Acid/Multi-Wall Carbon Nanotubes/Polyethylene Glycol Scaffolds for Bone Tissue Regeneration Application

聚乳酸/多壁碳纳米管/聚乙二醇支架在骨组织再生中的应用

阅读:8
作者:Shih-Feng Wang, Yun-Chung Wu, Yu-Che Cheng, Wei-Wen Hu

Abstract

Composite electrospun fibers were fabricated to develop drug loaded scaffolds to promote bone tissue regeneration. Multi-wall carbon nanotubes (MWCNTs) were incorporated to polylactic acid (PLA) to strengthen electrospun nanofibers. To modulate drug release behavior, different ratios of hydrophilic polyethylene glycol (PEG) were added to composite fibers. Glass transition temperature (Tg) can be reduced by the incorporated PEG to enhance the ductility of the nanofibers. The SEM images and the MTT results demonstrated that composite fibers are suitable scaffolds for cell adhesion and proliferation. Dexamethasone (DEX), an osteogenic inducer, was loaded to PLA/MWCNT/PEG fibers. The surface element analysis performed by XPS showed that fluorine of DEX in pristine PLA fibers was much higher than those of the MWCNT-containing fibers, suggesting that the pristine PLA fibers mainly load DEX on their surfaces, whereas MWCNTs can adsorb DEX with evenly distribution in nanofibers. Drug release experiments demonstrated that the release profiles of DEX were manipulated by the ratio of PEG, and that the more PEG in the nanofibers, the faster DEX was released. When rat bone marrow stromal cells (rBMSCs) were seeded on these nanofibers, the Alizarin Red S staining and calcium quantification results demonstrated that loaded DEX were released to promote osteogenic differentiation of rBMSCs and facilitate mineralized tissue formation. These results indicated that the DEX-loaded PLA/MWCNT/PEG nanofibers not only enhanced mechanical strength, but also promoted osteogenesis of stem cells via the continuous release of DEX. The nanofibers should be a potential scaffold for bone tissue engineering application.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。