New microRNAs in Drosophila--birth, death and cycles of adaptive evolution

果蝇中的新微小RNA——诞生、死亡和适应性进化的循环

阅读:10
作者:Yang Lyu, Yang Shen, Heng Li, Yuxin Chen, Li Guo, Yixin Zhao, Eric Hungate, Suhua Shi, Chung-I Wu, Tian Tang

Abstract

The origin and evolution of new microRNAs (miRNAs) is important because they can impact the transcriptome broadly. As miRNAs can potentially emerge constantly and rapidly, their rates of birth and evolution have been extensively debated. However, most new miRNAs identified appear not to be biologically significant. After an extensive search, we identified 12 new miRNAs that emerged de novo in Drosophila melanogaster in the last 4 million years (Myrs) and have been evolving adaptively. Unexpectedly, even though they are adaptively evolving at birth, more than 94% of such new miRNAs disappear over time. They provide selective advantages, but only for a transient evolutionary period. After 30 Myrs, all surviving miRNAs make the transition from the adaptive phase of rapid evolution to the conservative phase of slow evolution, apparently becoming integrated into the transcriptional network. During this transition, the expression shifts from being tissue-specific, predominantly in testes and larval brain/gonads/imaginal discs, to a broader distribution in many other tissues. Interestingly, a measurable fraction (20-30%) of these conservatively evolving miRNAs experience "evolutionary rejuvenation" and begin to evolve rapidly again. These rejuvenated miRNAs then start another cycle of adaptive - conservative evolution. In conclusion, the selective advantages driving evolution of miRNAs are themselves evolving, and sometimes changing direction, which highlights the regulatory roles of miRNAs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。