Transcriptional regulation of the copper transporter mfc1 in meiotic cells

减数分裂细胞中铜转运蛋白mfc1的转录调控

阅读:17
作者:Jude Beaudoin, Raphaël Ioannoni, Stéphane Mailloux, Samuel Plante, Simon Labbé

Abstract

Mfc1 is a meiosis-specific protein that mediates copper transport during the meiotic program in Schizosaccharomyces pombe. Although the mfc1(+) gene is induced at the transcriptional level in response to copper deprivation, the molecular determinants that are required for its copper starvation-dependent induction are unknown. Promoter deletion and site-directed mutagenesis have allowed identification of a new cis-regulatory element in the promoter region of the mfc1(+) gene. This cis-acting regulatory sequence containing the sequence TCGGCG is responsible for transcriptional activation of mfc1(+) under low-copper conditions. The TCGGCG sequence contains a CGG triplet known to serve as a binding site for members of the Zn(2)Cys(6) binuclear cluster transcriptional regulator family. In agreement with this fact, one member of this group of regulators, denoted Mca1, was found to be required for maximum induction of mfc1(+) gene expression. Analysis of Mca1 cellular distribution during meiosis revealed that it colocalizes with both chromosomes and sister chromatids during early, middle, and late phases of the meiotic program. Cells lacking Mca1 exhibited a meiotic arrest at metaphase I under low-copper conditions. Binding studies revealed that the N-terminal 150-residue segment of Mca1 expressed as a fusion protein in Escherichia coli specifically interacts with the TCGGCG sequence of the mfc1(+) promoter. Taken together, these results identify the cis-regulatory TCGGCG sequence and the transcription factor Mca1 as critical components for activation of the meiotic copper transport mfc1(+) gene in response to copper starvation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。