Cyclo-oxygenase-1 and -2 contribution to endothelial dysfunction in ageing

环氧合酶-1和-2对衰老过程中内皮功能障碍的贡献

阅读:8
作者:C Heymes, A Habib, D Yang, E Mathieu, F Marotte, J Samuel, C M Boulanger

Abstract

Experiments were designed to investigate the role of cyclo-oxygenase isoforms in endothelial dysfunction in ageing. Aortic rings with endothelium of aged and young (24 vs 4 month-old) Wistar rats, were mounted in organ chambers for the recording of changes in isometric tension. In young rats, acetylcholine (ACh) caused a complete relaxation which was not affected by indomethacin (0.3 microM), NS-398 (a preferential COX-2 inhibitor; 1 microM), SQ-29548 (a thromboxane-receptor antagonist; 1 microM), nor valeryl-salicylate (VAS, a preferential inhibitor of COX-1; 3 mM). In aged rats, ACh caused a biphasic response characterized by a first phase of relaxation (0.01 - 1 microM ACh), followed by a contraction (3 - 100 microM ACh). Indomethacin, NS-398 and SQ-29548, but not VAS, augmented the first phase. Indomethacin, VAS, NS-398 and SQ-29548 decreased the contractions to high ACh concentrations. Then, the sensitivity to thromboxane receptor activation was investigated with U-46619. The results show comparable EC(50) values in young and aged rats. In aged rats, the ACh-stimulated release of prostacyclin, prostaglandin F(2alpha) and thromboxane A(2) was decreased by either indomethacin, NS-398, VAS or endothelium removal. However, in young animals, the ACh-stimulated release of prostacyclin and prostaglandin F(2alpha) were smaller than in older animals and remained unaffected by NS-398. Aortic endothelial cells from aged - but not young - rats express COX-2 isoform, while COX-1 labelling was observed in endothelial cells from both young and aged rats. These data demonstrate the active contribution of COX-1 and -2 in endothelial dysfunction associated with ageing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。